Features

- Incorporates the ARM7TDMI ${ }^{\circledR}$ ARM ${ }^{\circledR}$ Thumb ${ }^{\circledR}$ Processor
- High-performance 32-bit RISC Architecture
- High-density 16-bit Instruction Set
- Leader in MIPS/Watt
- EmbeddedICE ${ }^{\text {TM }}$ In-circuit Emulation, Debug Communication Channel Support
- Internal High-speed Flash
- 512 Kbytes (AT91SAM7X512) Organized in Two Banks of 1024 Pages of 256 Bytes (Dual Plane)
- 256 Kbytes (AT91SAM7X256) Organized in 1024 Pages of 256 Bytes (Single Plane)
- 128 Kbytes (AT91SAM7X128) Organized in 512 Pages of 256 Bytes (Single Plane)
- Single Cycle Access at Up to $\mathbf{3 0} \mathbf{M H z}$ in Worst Case Conditions
- Prefetch Buffer Optimizing Thumb Instruction Execution at Maximum Speed
- Page Programming Time: 6 ms , Including Page Auto-erase, Full Erase Time: 15 ms
- 10,000 Write Cycles, 10-year Data Retention Capability, Sector Lock Capabilities, Flash Security Bit
- Fast Flash Programming Interface for High Volume Production
- Internal High-speed SRAM, Single-cycle Access at Maximum Speed
- 128 Kbytes (AT91SAM7X512)
- 64 Kbytes (AT91SAM7X256)
- 32 Kbytes (AT91SAM7X128)
- Memory Controller (MC)
- Embedded Flash Controller, Abort Status and Misalignment Detection
- Reset Controller (RSTC)
- Based on Power-on Reset Cells and Low-power Factory-calibrated Brownout Detector
- Provides External Reset Signal Shaping and Reset Source Status

AT91 ARM Thumb-based Microcontrollers
 AT91SAM7X512

Summary

Preliminary

- Clock Generator (CKGR)
- Low-power RC Oscillator, 3 to 20 MHz On-chip Oscillator and one PLL
- Power Management Controller (PMC)
- Power Optimization Capabilities, Including Slow Clock Mode (Down to 500 Hz) and Idle Mode
- Four Programmable External Clock Signals
- Advanced Interrupt Controller (AIC)
- Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
- Two External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected
- Debug Unit (DBGU)
- 2-wire UART and Support for Debug Communication Channel interrupt, Programmable ICE Access Prevention
- Periodic Interval Timer (PIT)
- 20-bit Programmable Counter plus 12-bit Interval Counter
- Windowed Watchdog (WDT)
- 12-bit key-protected Programmable Counter
- Provides Reset or Interrupt Signals to the System
- Counter May Be Stopped While the Processor is in Debug State or in Idle Mode
- Real-time Timer (RTT)
- 32-bit Free-running Counter with Alarm
- Runs Off the Internal RC Oscillator

NOTE: This is a summary document. The complete document is available on the Atmel website at www.atmel.com.

- Two Parallel Input/Output Controllers (PIO)
- Sixty-two Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os
- Input Change Interrupt Capability on Each I/O Line
- Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output
- Thirteen Peripheral DMA Controller (PDC) Channels
- One USB 2.0 Full Speed (12 Mbits per second) Device Port
- On-chip Transceiver, 1352-byte Configurable Integrated FIFOs
- One Ethernet MAC 10/100 base-T
- Media Independent Interface (MII) or Reduced Media Independent Interface (RMII)
- Integrated 28-byte FIFOs and Dedicated DMA Channels for Transmit and Receive
- One Part 2.0A and Part 2.0B Compliant CAN Controller
- Eight Fully-programmable Message Object Mailboxes, 16-bit Time Stamp Counter
- One Synchronous Serial Controller (SSC)
- Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
- I²S Analog Interface Support, Time Division Multiplex Support
- High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
- Two Universal Synchronous/Asynchronous Receiver Transmitters (USART)
- Individual Baud Rate Generator, IrDA ${ }^{\circledR}$ Infrared Modulation/Demodulation
- Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
- Full Modem Line Support on USART1
- Two Master/Slave Serial Peripheral Interfaces (SPI)
- 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
- One Three-channel 16-bit Timer/Counter (TC)
- Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
- Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
- One Four-channel 16-bit Power Width Modulation Controller (PWMC)
- One Two-wire Interface (TWI)
- Master Mode Support Only, All Two-wire Atmel EEPROMs Supported
- One 8-channel 10-bit Analog-to-Digital Converter, Four Channels Multiplexed with Digital I/Os
- SAM-BA ${ }^{\text {TM }}$ Boot Assistance
- Default Boot program
- Interface with SAM-BA Graphic User Interface
- IEEE $^{\circledR} 1149.1$ JTAG Boundary Scan on All Digital Pins
- 5V-tolerant I/Os, Including Four High-current Drive I/O lines, Up to 16 mA Each
- Power Supplies
- Embedded 1.8V Regulator, Drawing up to 100 mA for the Core and External Components
- 3.3V VDDIO I/O Lines Power Supply, Independent 3.3V VDDFLASH Flash Power Supply
- 1.8V VDDCORE Core Power Supply with Brownout Detector
- Fully Static Operation: Up to 55 MHz at 1.65 V and $85^{\circ} \mathrm{C}$ Worst Case Conditions
- Available in 100-lead LQFP Green and 100-ball TFBGA Green Packages

AT91SAM7X512/256/128 Preliminary Summary

1. Description

Atmel's AT91SAM7X512/256/128 is a member of a series of highly integrated Flash microcontrollers based on the 32-bit ARM RISC processor. It features 512/256/128 Kbyte high-speed Flash and 128/64/32 Kbyte SRAM, a large set of peripherals, including an 802.3 Ethernet MAC and a CAN controller. A complete set of system functions minimizes the number of external components.

The embedded Flash memory can be programmed in-system via the JTAG-ICE interface or via a parallel interface on a production programmer prior to mounting. Built-in lock bits and a security bit protect the firmware from accidental overwrite and preserve its confidentiality.
The AT91SAM7X512/256/128 system controller includes a reset controller capable of managing the power-on sequence of the microcontroller and the complete system. Correct device operation can be monitored by a built-in brownout detector and a watchdog running off an integrated RC oscillator.

By combining the ARM7TDMI processor with on-chip Flash and SRAM, and a wide range of peripheral functions, including USART, SPI, CAN Controller, Ethernet MAC, Timer Counter, RTT and Analog-to-Digital Converters on a monolithic chip, the AT91SAM7X512/256/128 is a powerful device that provides a flexible, cost-effective solution to many embedded control applications requiring communication over, for example, Ethernet, CAN wired and Zigbee ${ }^{\text {TM }}$ wireless networks.

1.1 Configuration Summary of the AT91SAM7X512/256/128

The AT91SAM7X512, AT91SAM7X256 and AT91SAM7X128 differ only in memory sizes. Table 1-1 summarizes the configurations of the three devices.

Table 1-1. Configuration Summary

Device	Flash	Flash Organization	SRAM
AT91SAM7X512	512 Kbytes	dual plane	128 Kbytes
AT91SAM7X256	256 Kbytes	single plane	64 Kbytes
AT91SAM7X128	128 Kbytes	single plane	32 Kbytes

2. AT91SAM7X512/256/128 Block Diagram

Figure 2-1. AT91SAM7X512/256/128 Block Diagram

AT91SAM7X512/256/128 Preliminary Summary

3. Signal Description

Table 3-1. \quad Signal Description List

Signal Name	Function	Type	Active Level	Comments
Power				
VDDIN	Voltage Regulator and ADC Power Supply Input	Power		3 V to 3.6 V
VDDOUT	Voltage Regulator Output	Power		1.85 V
VDDFLASH	Flash and USB Power Supply	Power		3 V to 3.6 V
VDDIO	I/O Lines Power Supply	Power		3 V to 3.6 V
VDDCORE	Core Power Supply	Power		1.65 V to 1.95 V
VDDPLL	PLL	Power		1.65 V to 1.95 V
GND	Ground	Ground		
Clocks, Oscillators and PLLs				
XIN	Main Oscillator Input	Input		
XOUT	Main Oscillator Output	Output		
PLLRC	PLL Filter	Input		
PCK0 - PCK3	Programmable Clock Output	Output		
ICE and JTAG				
TCK	Test Clock	Input		No pull-up resistor
TDI	Test Data In	Input		No pull-up resistor.
TDO	Test Data Out	Output		
TMS	Test Mode Select	Input		No pull-up resistor.
JTAGSEL	JTAG Selection	Input		Pull-down resistor.
Flash Memory				
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	Pull-down resistor
Reset/Test				
NRST	Microcontroller Reset	I/O	Low	Pull-up resistor, Open Drain Output
TST	Test Mode Select	Input	High	Pull-down resistor
Debug Unit				
DRXD	Debug Receive Data	Input		
DTXD	Debug Transmit Data	Output		
AIC				
IRQ0 - IRQ1	External Interrupt Inputs	Input		
FIQ	Fast Interrupt Input	Input		
PIO				
PA0 - PA30	Parallel IO Controller A	I/O		Pulled-up input at reset
PB0 - PB30	Parallel IO Controller B	I/O		Pulled-up input at reset

Table 3-1. \quad Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Comments
USB Device Port				
DDM	USB Device Port Data -	Analog		
DDP	USB Device Port Data +	Analog		
USART				
SCK0 - SCK1	Serial Clock	I/O		
TXD0 - TXD1	Transmit Data	I/O		
RXD0 - RXD1	Receive Data	Input		
RTS0 - RTS1	Request To Send	Output		
CTS0-CTS1	Clear To Send	Input		
DCD1	Data Carrier Detect	Input		
DTR1	Data Terminal Ready	Output		
DSR1	Data Set Ready	Input		
RI1	Ring Indicator	Input		
Synchronous Serial Controller				
TD	Transmit Data	Output		
RD	Receive Data	Input		
TK	Transmit Clock	I/O		
RK	Receive Clock	I/O		
TF	Transmit Frame Sync	1/O		
RF	Receive Frame Sync	I/O		
Timer/Counter				
TCLK0 - TCLK2	External Clock Inputs	Input		
TIOA0 - TIOA2	I/O Line A	I/O		
TIOB0 - TIOB2	I/O Line B	I/O		
PWM Controller				
PWM0 - PWM3	PWM Channels	Output		
Serial Peripheral Interface - SPIx				
SPIx_MISO	Master In Slave Out	I/O		
SPIx_MOSI	Master Out Slave In	I/O		
SPIx_SPCK	SPI Serial Clock	1/O		
SPIx_NPCS0	SPI Peripheral Chip Select 0	I/O	Low	
SPIx_NPCS1-NPCS3	SPI Peripheral Chip Select 1 to 3	Output	Low	
Two-wire Interface				
TWD	Two-wire Serial Data	I/O		
TWCK	Two-wire Serial Clock	I/O		

AT91SAM7X512/256/128 Preliminary Summary

Table 3-1. \quad Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Comments
Analog-to-Digital Converter				
AD0-AD3	Analog Inputs	Analog		Digital pulled-up inputs at reset
AD4-AD7	Analog Inputs	Analog		Analog Inputs
ADTRG	ADC Trigger	Input		
ADVREF	ADC Reference	Analog		
Fast Flash Programming Interface				
PGMEN0-PGMEN1	Programming Enabling	Input		
PGMM0-PGMM3	Programming Mode	Input		
PGMD0-PGMD15	Programming Data	I/O		
PGMRDY	Programming Ready	Output	High	
PGMNVALID	Data Direction	Output	Low	
PGMNOE	Programming Read	Input	Low	
PGMCK	Programming Clock	Input		
PGMNCMD	Programming Command	Input	Low	
CAN Controller				
CANRX	CAN Input	Input		
CANTX	CAN Output	Output		
Ethernet MAC 10/100				
EREFCK	Reference Clock	Input		RMII only
ETXCK	Transmit Clock	Input		MII only
ERXCK	Receive Clock	Input		MII only
ETXEN	Transmit Enable	Output		
ETX0-ETX3	Transmit Data	Output		ETX0 - ETX1 only in RMII
ETXER	Transmit Coding Error	Output		MII only
ERXDV	Receive Data Valid	Input		MII only
ECRSDV	Carrier Sense and Data Valid	Input		RMII only
ERX0-ERX3	Receive Data	Input		ERX0 - ERX1 only in RMII
ERXER	Receive Error	Input		
ECRS	Carrier Sense	Input		MII only
ECOL	Collision Detected	Input		MII only
EMDC	Management Data Clock	Output		
EMDIO	Management Data Input/Output	I/O		
EF100	Force $100 \mathrm{Mbits} / \mathrm{sec}$.	Output	High	RMII only

4. Package

The AT91SAM7X512/256/128 is available in 100-lead LQFP Green and 100-ball TFBGA RoHScompliant packages.

4.1 100-lead LQFP Package Outline

Figure 4-1 shows the orientation of the 100-lead LQFP package. A detailed mechanical description is given in the Mechanical Characteristics section.

Figure 4-1. 100-lead LQFP Package Outline (Top View)

AT91SAM7X512/256/128 Preliminary Summary

$4.2 \quad$ 100-lead LQFP Pinout

Table 4-1. \quad Pinout in 100-lead LQFP Package

1	ADVREF
2	GND
3	AD4
4	AD5
5	AD6
6	AD7
7	VDDOUT
8	VDDIN
9	PB27/AD0
10	PB28/AD1
11	PB29/AD2
12	PB30/AD3
13	PA8/PGMM0
14	PA9/PGMM1
15	VDDCORE
16	GND
17	VDDIO
18	PA10/PGMM2
19	PA11/PGMM3
20	PA12/PGMD0
21	PA13/PGMD1
22	PA14/PGMD2
23	PA15/PGMD3
24	PA16/PGMD4
25	PA17/PGMD5

26	PA18/PGMD6
27	PB9
28	PB8
29	PB14
30	PB13
31	PB6
32	GND
33	VDDIO
34	PB5
35	PB15
36	PB17
37	VDDCORE
38	PB7
39	PB12
40	PB0
41	PB1
42	PB2
43	PB3
44	PB10
45	PB11
46	PA19/PGMD7
47	PA20/PGMD8
48	VDDIO
49	PA21/PGMD9
50	PA22/PGMD10

51	TDI
52	GND
53	PB16
54	PB4
55	PA23/PGMD11
56	PA24/PGMD12
57	NRST
58	TST
59	PA25/PGMD13
60	PA26/PGMD14
61	VDDIO
62	VDDCORE
63	PB18
64	PB19
65	PB20
66	PB21
67	PB22
68	GND
69	PB23
70	PB24
71	PB25
72	PB26
73	PA27/PGMD15
74	PA28
75	PA29

76	TDO
77	JTAGSEL
78	TMS
79	TCK
80	PA30
81	PA0/PGMEN0
82	PA1/PGMEN1
83	GND
84	VDDIO
85	PA3
86	PA2
87	VDDCORE
88	PA4/PGMNCMD
89	PA5/PGMRDY
90	PA6/PGMNOE
91	PA7/PGMNVALID
92	ERASE
93	DDM
94	DDP
95	VDDFLASH
96	GNDD
97	XIN/PGMCK
98	XOUT
99	PLLRC
100	VDDPLL

4.3 100-ball TFBGA Package Outline

Figure 4-2 shows the orientation of the 100-ball TFBGA package. A detailed mechanical description is given in the Mechanical Characteristics section of the full datasheet.

Figure 4-2. 100-ball TFBGA Package Outline (Top View)

4.4 100-ball TFBGA Pinout

Pinout in 100-ball TFBGA Package

Pin	Signal Name
A1	PA22/PGMD10
A2	PA21/PGMD9
A3	PA20/PGMD8
A4	PB1
A5	PB7
A6	PB5
A7	PB8
A8	PB9
A9	PA18/PGMD6
A10	VDDIO
B1	TDI
B2	PA19/PGMD7
B3	PB11
B4	PB2
B5	PB12
B6	PB15
B7	PB14
B8	PA14/PGMD2
B9	PA16/PGMD4
B10	PA17/PGMD5
C1	PB16
C2	PB4
C3	PB10
C4	PB3
C5	PB0

Pin	Signal Name
C6	PB17
C7	PB13
C8	PA13/PGMD1
C9	PA12/PGMD0
C10	PA15/PGMD3
D1	PA23/PGMD11
D2	PA24/PGMD12
D3	NRST
D4	TST
D5	PB19
D6	PB6
D7	PA10/PGMM2
D8	VDDIO
D9	PB27/AD0
D10	PA11/PGMM3
E1	PA25/PGMD13
E2	PA26/PGMD14
E3	PB18
E4	PB20
E5	TMS
E6	GND
E7	VDDIO
E8	PB28/AD1
E9	VDDIO
E10	GND

Pin	Signal Name
F1	PB21
F2	PB23
F3	PB25
F4	PB26
F5	TCK
F6	PA6/PGMNOE
F7	ERASE
F8	VDDCORE
F9	GND
F10	VDDIN
G1	PB22
G2	PB24
G3	PA27/PGMD15
G4	TDO
G5	PA2
G6	PA5/PGMRDY
G7	VDDCORE
G8	GND
G9	PB30/AD3
G10	VDDOUT
H1	VDDCORE
H2	PA28
H3	JTAGSEL
H4	PA3
H5	PA4/PGMNCMD

Pin	Signal Name
H6	PA7/PGMNVALID
H7	PA9/PGMM1
H8	PA8/PGMM0
H9	PB29/AD2
H10	PLLRC
J1	PA29
J2	PA30
J3	PA0/PGMEN0
J4	PA1/PGMEN1
J5	VDDFLASH
J6	GND
J7	XIN/PGMCK
J8	XOUT
J9	GND
J10	VDDPLL
K1	VDDCORE
K2	VDDCORE
K3	DDP
K4	DDM
K5	GND
K6	AD7
K7	AD6
K8	AD5
K9	AD4
K10	ADVREF

AT91SAM7X512/256/128 Preliminary Summary

5. Power Considerations

5.1 Power Supplies

The AT91SAM7X512/256/128 has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are:

- VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0 V to 3.6 V , 3.3 V nominal. In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In this case, VDDOUT should be left unconnected.
- VDDOUT pin. It is the output of the 1.8 V voltage regulator.
- VDDIO pin. It powers the I/O lines; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDFLASH pin. It powers the USB transceivers and a part of the Flash and is required for the Flash to operate correctly; voltage ranges from 3.0 V to $3.6 \mathrm{~V}, 3.3 \mathrm{~V}$ nominal.
- VDDCORE pins. They power the logic of the device; voltage ranges from 1.65 V to 1.95 V , 1.8 V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly.
- VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin.
No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane.

5.2 Power Consumption

The AT91SAM7X512/256/128 has a static current of less than $60 \mu \mathrm{~A}$ on VDDCORE at $25^{\circ} \mathrm{C}$, including the RC oscillator, the voltage regulator and the power-on reset when the brownout detector is deactivated. Activating the brownout detector adds $28 \mu \mathrm{~A}$ static current.

The dynamic power consumption on VDDCORE is less than 90 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA .

5.3 Voltage Regulator

The AT91SAM7X512/256/128 embeds a voltage regulator that is managed by the System Controller.

In Normal Mode, the voltage regulator consumes less than $100 \mu \mathrm{~A}$ static current and draws 100 mA of output current.

The voltage regulator also has a Low-power Mode. In this mode, it consumes less than $25 \mu \mathrm{~A}$ static current and draws 1 mA of output current.
Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel: one external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible. One external $2.2 \mu \mathrm{~F}$ (or $3.3 \mu \mathrm{~F}$) X7R capacitor should be connected between VDDOUT and GND.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. The input decoupling capacitor should be placed close to the chip. For example, two capacitors can be used in parallel: 100 nF NPO and $4.7 \mu \mathrm{~F}$ X7R.

5.4 Typical Powering Schematics

The AT91SAM7X512/256/128 supports a 3.3 V single supply mode. The internal regulator input connected to the 3.3 V source and its output feeds VDDCORE and the VDDPLL. Figure 5-1 shows the power schematics to be used for USB bus-powered systems.

Figure 5-1. \quad 3.3V System Single Power Supply Schematic

AT91SAM7X512/256/128 Preliminary Summary

6. I/O Lines Considerations

6.1 JTAG Port Pins

TMS, TDI and TCK are schmitt trigger inputs and are not 5-V tolerant. TMS, TDI and TCK do not integrate a pull-up resistor.
TDO is an output, driven at up to VDDIO, and has no pull-up resistor.
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. The JTAGSEL pin integrates a permanent pull-down resistor of about $15 \mathrm{k} \Omega$ to GND, so that it can be left unconnected for normal operations.

6.2 Test Pin

The TST pin is used for manufacturing test or fast programming mode of the AT91SAM7X512/256/128 when asserted high. The TST pin integrates a permanent pull-down resistor of about $15 \mathrm{k} \Omega$ to GND, so that it can be left unconnected for normal operations.

To enter fast programming mode, the TST pin and the PAO and PA1 pins should be tied high and PA2 tied to low.

Driving the TST pin at a high level while PA0 or PA1 is driven at 0 leads to unpredictable results.

6.3 Reset Pin

The NRST pin is bidirectional with an open drain output buffer. It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. There is no constraint on the length of the reset pulse, and the reset controller can guarantee a minimum pulse length. This allows connection of a simple push-button on the NRST pin as system user reset, and the use of the signal NRST to reset all the components of the system.
The NRST pin integrates a permanent pull-up resistor to VDDIO.

6.4 ERASE Pin

The ERASE pin is used to re-initialize the Flash content and some of its NVM bits. It integrates a permanent pull-down resistor of about $15 \mathrm{k} \Omega$ to GND, so that it can be left unconnected for normal operations.
This pin is debounced by the RC oscillator to improve the glitch tolerance. When the pin is tied to high during less than 100 ms , ERASE pin is not taken into account. The pin must be tied high during more than 220 ms to perform the re-initialization of the Flash.

6.5 PIO Controller Lines

All the I/O lines, PA0 to PA30 and PB0 to PB30, are 5V-tolerant and all integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the PIO controllers.

5 V-tolerant means that the I/O lines can drive voltage level according to VDDIO, but can be driven with a voltage of up to 5.5 V . However, driving an I/O line with a voltage over VDDIO while the programmable pull-up resistor is enabled will create a current path through the pull-up resis-
tor from the I/O line to VDDIO. Care should be taken, in particular at reset, as all the I/O lines default to input with pull-up resistor enabled at reset.

6.6 I/O Lines Current Drawing

The PIO lines PAO to PA3 are high-drive current capable. Each of these I/O lines can drive up to 16 mA permanently.

The remaining I/O lines can draw only 8 mA .
However, the total current drawn by all the I/O lines cannot exceed 200 mA .

AT91SAM7X512/256/128 Preliminary Summary

7. Processor and Architecture

7.1 ARM7TDMI Processor

- RISC processor based on ARMv4T Von Neumann architecture
- Runs at up to 55 MHz , providing $0.9 \mathrm{MIPS} / \mathrm{MHz}$
- Two instruction sets
- ARM high-performance 32-bit instruction set
- Thumb high code density 16-bit instruction set
- Three-stage pipeline architecture
- Instruction Fetch (F)
- Instruction Decode (D)
- Execute (E)

7.2 Debug and Test Features

- Integrated embedded in-circuit emulator
- Two watchpoint units
- Test access port accessible through a JTAG protocol
- Debug communication channel
- Debug Unit
- Two-pin UART
- Debug communication channel interrupt handling
- Chip ID Register
- IEEE1149.1 JTAG Boundary-scan on all digital pins

7.3 Memory Controller

- Programmable Bus Arbiter
- Handles requests from the ARM7TDMI, the Ethernet MAC and the Peripheral DMA Controller
- Address decoder provides selection signals for
- Three internal 1 Mbyte memory areas
- One 256 Mbyte embedded peripheral area
- Abort Status Registers
- Source, Type and all parameters of the access leading to an abort are saved
- Facilitates debug by detection of bad pointers
- Misalignment Detector
- Alignment checking of all data accesses
- Abort generation in case of misalignment
- Remap Command
- Remaps the SRAM in place of the embedded non-volatile memory
- Allows handling of dynamic exception vectors
- Embedded Flash Controller
- Embedded Flash interface, up to three programmable wait states
- Prefetch buffer, buffering and anticipating the 16-bit requests, reducing the required wait states
- Key-protected program, erase and lock/unlock sequencer
- Single command for erasing, programming and locking operations
- Interrupt generation in case of forbidden operation

7.4 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Thirteen channels
- Two for each USART
- Two for the Debug Unit
- Two for the Serial Synchronous Controller
- Two for each Serial Peripheral Interface
- One for the Analog-to-digital Converter
- Low bus arbitration overhead
- One Master Clock cycle needed for a transfer from memory to peripheral
- Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirements

AT91SAM7X512/256/128 Preliminary Summary

8. Memories

8.1 AT91SAM7X512

- 512 Kbytes of dual-plane Flash Memory
- 2 contiguous banks of 1024 pages of 256 bytes
- Fast access time, 30 MHz single-cycle access in Worst Case conditions
- Page programming time: 6 ms , including page auto-erase
- Page programming without auto-erase: 3 ms
- Full chip erase time: 15 ms
- 10,000 write cycles, 10-year data retention capability
- 32 lock bits, protecting 32 sectors of 64 pages
- Protection Mode to secure contents of the Flash
- 128 Kbytes of Fast SRAM
- Single-cycle access at full speed

8.2 AT91SAM7X256

- 256 Kbytes of Flash Memory
- 1024 pages of 256 bytes
- Fast access time, 30 MHz single-cycle access in Worst Case conditions
- Page programming time: 6 ms , including page auto-erase
- Page programming without auto-erase: 3 ms
- Full chip erase time: 15 ms
- 10,000 write cycles, 10-year data retention capability
- 16 lock bits, each protecting 16 sectors of 64 pages
- Protection Mode to secure contents of the Flash
- 64 Kbytes of Fast SRAM
- Single-cycle access at full speed

8.3 AT91SAM7X128

- 128 Kbytes of Flash Memory
- 512 pages of 256 bytes
- Fast access time, 30 MHz single-cycle access in Worst Case conditions
- Page programming time: 6 ms , including page auto-erase
- Page programming without auto-erase: 3 ms
- Full chip erase time: 15 ms
- 10,000 write cycles, 10-year data retention capability
- 8 lock bits, each protecting 8 sectors of 64 pages
- Protection Mode to secure contents of the Flash
- 32 Kbytes of Fast SRAM
- Single-cycle access at full speed

Figure 8-1. AT91SAM7X512/256/128 Memory Mapping

AT91SAM7X512/256/128 Preliminary Summary

8.4 Memory Mapping

8.4.1 Internal SRAM

- The AT91SAM7X512 embeds a high-speed 128 Kbyte SRAM bank.
- The AT91SAM7X256 embeds a high-speed 64 Kbyte SRAM bank.
- The AT91SAM7X128 embeds a high-speed 32 Kbyte SRAM bank.

After reset and until the Remap Command is performed, the SRAM is only accessible at address 0x0020 0000. After Remap, the SRAM also becomes available at address 0x0.

8.4.2 Internal ROM

The AT91SAM7X512/256/128 embeds an Internal ROM. At any time, the ROM is mapped at address 0×300000. The ROM contains the FFPI and the SAM-BA program.

8.4.3 Internal Flash

- The AT91SAM7X512 features two banks (dual plane) of 256 Kbytes of Flash.
- The AT91SAM7X256 features one bank (single plane) of 256 Kbytes of Flash.
- The AT91SAM7X128 features one bank (single plane) of 128 Kbytes of Flash.

At any time, the Flash is mapped to address 0×00100000. It is also accessible at address 0×0 after the reset, if GPNVM bit 2 is cleared and before the Remap Command.
A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

This GPNVM bit can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface.
Setting the GPNVM Bit 2 selects the boot from the Flash. Asserting ERASE clears the GPNVM Bit 2 and thus selects the boot from the ROM by default.

Figure 8-2. Internal Memory Mapping with GPNVM Bit $2=0$ (default)

Figure 8-3. Internal Memory Mapping with GPNVM Bit $2=1$

8.5 Embedded Flash

8.5.1 Flash Overview

- The Flash of the AT91SAM7X512 is organized in two banks (dual plane) of 1024 pages of 256 bytes. The 524,288 bytes are organized in 32-bit words.
- The Flash of the AT91SAM7X256 is organized in 1024 pages of 256 bytes (single plane). It reads as 65,536 32-bit words.
- The Flash of the AT91SAM7X128 is organized in 512 pages of 256 bytes (single plane). It reads as 32,76832 -bit words.

The Flash contains a 256 -byte write buffer, accessible through a 32 -bit interface.
The Flash benefits from the integration of a power reset cell and from the brownout detector. This prevents code corruption during power supply changes, even in the worst conditions.

When Flash is not used (read or write access), it is automatically placed into standby mode.

8.5.2 Embedded Flash Controller

The Embedded Flash Controller (EFC) manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped within the Memory Controller on the APB. The User Interface allows:

- programming of the access parameters of the Flash (number of wait states, timings, etc.)
- starting commands such as full erase, page erase, page program, NVM bit set, NVM bit clear, etc.
- getting the end status of the last command
- getting error status
- programming interrupts on the end of the last commands or on errors

The Embedded Flash Controller also provides a dual 32-bit Prefetch Buffer that optimizes 16-bit access to the Flash. This is particularly efficient when the processor is running in Thumb mode.

Two EFCs are embedded in the AT91SAM7X512 to control each bank of 256 KBytes. Dualplane organization allows concurrent read and program functionality. Read from one memory

AT91SAM7X512/256/128 Preliminary Summary

plane may be performed even while program or erase functions are being executed in the other memory plane.

One EFC is embedded in the AT91SAM7X256/128 to control the single plane of 256/128 KBytes.

8.5.3 Lock Regions

8.5.3.1 AT91SAM7X512

Two Embedded Flash Controllers each manage 16 lock bits to protect 16 regions of the flash against inadvertent flash erasing or programming commands. The AT91SAM7X512 contains 32 lock regions and each lock region contains 64 pages of 256 bytes. Each lock region has a size of 16 Kbytes.
If a locked-region's erase or program command occurs, the command is aborted and the EFC trigs an interrupt.

The 32 NVM bits are software programmable through both of the EFC User Interfaces. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.
AT91SAM7X256
The Embedded Flash Controller manages 16 lock bits to protect 16 regions of the flash against inadvertent flash erasing or programming commands. The AT91SAM7X256 contains 16 lock regions and each lock region contains 64 pages of 256 bytes. Each lock region has a size of 16 Kbytes.

If a locked-region's erase or program command occurs, the command is aborted and the EFC trigs an interrupt.

The 16 NVM bits are software programmable through the EFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.
8.5.3.3 AT91SAM7X128

The Embedded Flash Controller manages 8 lock bits to protect 8 regions of the flash against inadvertent flash erasing or programming commands. The AT91SAM7X128 contains 8 lock regions and each lock region contains 64 pages of 256 bytes. Each lock region has a size of 16 Kbytes.

If a locked-region's erase or program command occurs, the command is aborted and the EFC trigs an interrupt.

The 8 NVM bits are software programmable through the EFC User Interface. The command "Set Lock Bit" enables the protection. The command "Clear Lock Bit" unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

8.5.4 Security Bit Feature

The AT91SAM7X512/256/128 features a security bit, based on a specific NVM-Bit. When the security is enabled, any access to the Flash, either through the ICE interface or through the Fast

Flash Programming Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the Command "Set Security Bit" of the EFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full flash erase is performed. When the security bit is deactivated, all accesses to the flash are permitted.
It is important to note that the assertion of the ERASE pin should always be longer than 220 ms .
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

8.5.5 Non-volatile Brownout Detector Control

Two general purpose NVM (GPNVM) bits are used for controlling the brownout detector (BOD), so that even after a power loss, the brownout detector operations remain in their state.

These two GPNVM bits can be cleared or set respectively through the commands "Clear Gen-eral-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface.

- GPNVM Bit 0 is used as a brownout detector enable bit. Setting the GPNVM Bit 0 enables the BOD, clearing it disables the BOD. Asserting ERASE clears the GPNVM Bit 0 and thus disables the brownout detector by default.
- The GPNVM Bit 1 is used as a brownout reset enable signal for the reset controller. Setting the GPNVM Bit 1 enables the brownout reset when a brownout is detected, Clearing the GPNVM Bit 1 disables the brownout reset. Asserting ERASE disables the brownout reset by default.

8.5.6 Calibration Bits

Eight NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

8.6 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang-programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when the TST pin and the PAO and PA1 pins are all tied high.

8.7 SAM-BA Boot Assistant

The SAM-BA Boot Assistant is a default Boot Program that provides an easy way to program insitu the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the DBGU or the USB Device Port.

- Communication via the DBGU supports a wide range of crystals from 3 to 20 MHz via software auto-detection.

AT91SAM7X512/256/128 Preliminary Summary

- Communication via the USB Device Port is limited to an 18.432 MHz crystal.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped at address 0×0 when the GPNVM Bit 2 is set to 0 .
When GPNVM bit 2 is set to 1 , the device boots from the Flash.
When GPNVM bit 2 is set to 0 , the device boots from ROM (SAM-BA).

9. System Controller

The System Controller manages all vital blocks of the microcontroller: interrupts, clocks, power, time, debug and reset.

The System Controller peripherals are all mapped to the highest 4 Kbytes of address space, between addresses 0xFFFF F000 and 0xFFFF FFFF.

Figure $9-1$ on page 25 shows the System Controller Block Diagram.
Figure 8-1 on page 18 shows the mapping of the User Interface of the System Controller peripherals. Note that the Memory Controller configuration user interface is also mapped within this address space.

Figure 9-1. System Controller Block Diagram

9.1 Reset Controller

- Based on one power-on reset cell and one brownout detector
- Status of the last reset, either Power-up Reset, Software Reset, User Reset, Watchdog Reset, Brownout Reset
- Controls the internal resets and the NRST pin output
- Allows to shape a signal on the NRST line, guaranteeing that the length of the pulse meets any requirement.

9.1.1 Brownout Detector and Power-on Reset

The AT91SAM7X512/256/128 embeds one brownout detection circuit and a power-on reset cell. The power-on reset is supplied with and monitors VDDCORE.

Both signals are provided to the Flash to prevent any code corruption during power-up or powerdown sequences or if brownouts occur on the power supplies.

The power-on reset cell has a limited-accuracy threshold at around 1.5 V . Its output remains low during power-up until VDDCORE goes over this voltage level. This signal goes to the reset controller and allows a full re-initialization of the device.

The brownout detector monitors the VDDCORE and VDDFLASH levels during operation by comparing them to a fixed trigger level. It secures system operations in the most difficult environments and prevents code corruption in case of brownout on the VDDCORE or VDDFLASH.

When the brownout detector is enabled and VDDCORE decreases to a value below the trigger level (Vbot18-, defined as Vbot18 - hyst/2), the brownout output is immediately activated.

When VDDCORE increases above the trigger level (Vbot18+, defined as Vbot18 + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about $1 \mu \mathrm{~s}$.

The VDDCORE threshold voltage has a hysteresis of about 50 mV , to ensure spike free brownout detection. The typical value of the brownout detector threshold is 1.68 V with an accuracy of $\pm 2 \%$ and is factory calibrated.

When the brownout detector is enabled and VDDFLASH decreases to a value below the trigger level (Vbot33-, defined as Vbot33 - hyst/2), the brownout output is immediately activated.

When VDDFLASH increases above the trigger level (Vbot33+, defined as Vbot33 + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about $1 \mu \mathrm{~s}$.

The VDDFLASH threshold voltage has a hysteresis of about 50 mV , to ensure spike free brownout detection. The typical value of the brownout detector threshold is 2.80 V with an accuracy of $\pm 3.5 \%$ and is factory calibrated.

The brownout detector is low-power, as it consumes less than $28 \mu \mathrm{~A}$ static current. However, it can be deactivated to save its static current. In this case, it consumes less than $1 \mu \mathrm{~A}$. The deactivation is configured through the GPNVM bit 0 of the Flash.

AT91SAM7X512/256/128 Preliminary Summary

9.2 Clock Generator

The Clock Generator embeds one low-power RC Oscillator, one Main Oscillator and one PLL with the following characteristics:

- RC Oscillator ranges between 22 KHz and 42 KHz
- Main Oscillator frequency ranges between 3 and 20 MHz
- Main Oscillator can be bypassed
- PLL output ranges between 80 and 200 MHz

It provides SLCK, MAINCK and PLLCK.
Figure 9-2. Clock Generator Block Diagram

9.3 Power Management Controller

The Power Management Controller uses the Clock Generator outputs to provide:

- the Processor Clock PCK
- the Master Clock MCK
- the USB Clock UDPCK
- all the peripheral clocks, independently controllable
- four programmable clock outputs

The Master Clock (MCK) is programmable from a few hundred Hz to the maximum operating frequency of the device.

The Processor Clock (PCK) switches off when entering processor idle mode, thus allowing reduced power consumption while waiting for an interrupt.

Figure 9-3. Power Management Controller Block Diagram

9.4 Advanced Interrupt Controller

- Controls the interrupt lines (nIRQ and nFIQ) of an ARM Processor
- Individually maskable and vectored interrupt sources
- Source 0 is reserved for the Fast Interrupt Input (FIQ)
- Source 1 is reserved for system peripherals (RTT, PIT, EFC, PMC, DBGU, etc.)
- Other sources control the peripheral interrupts or external interrupts
- Programmable edge-triggered or level-sensitive internal sources
- Programmable positive/negative edge-triggered or high/low level-sensitive external sources
- 8-level Priority Controller
- Drives the normal interrupt nIRQ of the processor
- Handles priority of the interrupt sources

AT91SAM7X512/256/128 Preliminary Summary

- Higher priority interrupts can be served during service of lower priority interrupt
- Vectoring
- Optimizes interrupt service routine branch and execution
- One 32-bit vector register per interrupt source
- Interrupt vector register reads the corresponding current interrupt vector
- Protect Mode
- Easy debugging by preventing automatic operations
- Fast Forcing
- Permits redirecting any interrupt source on the fast interrupt
- General Interrupt Mask
- Provides processor synchronization on events without triggering an interrupt

9.5 Debug Unit

- Comprises:
- One two-pin UART
- One Interface for the Debug Communication Channel (DCC) support
- One set of Chip ID Registers
- One Interface providing ICE Access Prevention
- Two-pin UART
- USART-compatible User Interface
- Programmable Baud Rate Generator
- Parity, Framing and Overrun Error
- Automatic Echo, Local Loopback and Remote Loopback Channel Modes
- Debug Communication Channel Support
- Offers visibility of COMMRX and COMMTX signals from the ARM Processor
- Chip ID Registers
- Identification of the device revision, sizes of the embedded memories, set of peripherals
- Chip ID is 0x275C 0A40 (VERSION 0) for AT91SAM7X512
- Chip ID is 0x275B 0940 (VERSION 0) for AT91SAM7X256
- Chip ID is 0x275A 0740 (VERSION 0) for AT91SAM7X128

9.6 Periodic Interval Timer

- 20-bit programmable counter plus 12-bit interval counter

9.7 Watchdog Timer

- 12-bit key-protected Programmable Counter running on prescaled SLCK
- Provides reset or interrupt signals to the system
- Counter may be stopped while the processor is in debug state or in idle mode

9.8 Real-time Timer

- 32-bit free-running counter with alarm running on prescaled SLCK
- Programmable 16-bit prescaler for SLCK accuracy compensation

9.9 PIO Controllers

- Two PIO Controllers, each controlling 31 I/O lines
- Fully programmable through set/clear registers
- Multiplexing of two peripheral functions per I/O line
- For each I/O line (whether assigned to a peripheral or used as general-purpose I/O)
- Input change interrupt
- Half a clock period glitch filter
- Multi-drive option enables driving in open drain
- Programmable pull-up on each I/O line
- Pin data status register, supplies visibility of the level on the pin at any time
- Synchronous output, provides Set and Clear of several I/O lines in a single write

9.10 Voltage Regulator Controller

The purpose of this controller is to select the Power Mode of the Voltage Regulator between Normal Mode (bit 0 is cleared) or Standby Mode (bit 0 is set).

AT91SAM7X512/256/128 Preliminary Summary

10. Peripherals

10.1 User Interface

The User Peripherals are mapped in the 256 Mbytes of address space between 0xF000 0000 and 0xFFFF EFFF. Each peripheral is allocated 16 Kbytes of address space.
A complete memory map is provided in Figure 8-1 on page 18.

10.2 Peripheral Identifiers

The AT91SAM7X512/256/128 embeds a wide range of peripherals. Table 10-1 defines the Peripheral Identifiers of the AT91SAM7X512/256/128. Unique peripheral identifiers are defined for both the Advanced Interrupt Controller and the Power Management Controller.

Table 10-1. Peripheral Identifiers

Peripheral ID	Peripheral Mnemonic	Peripheral Name	External Interrupt
0	AIC	Advanced Interrupt Controller	FIQ
1	SYSC ${ }^{(1)}$	System Controller	
2	PIOA	Parallel I/O Controller A	
3	PIOB	Parallel I/O Controller B	
4	SPIO	Serial Peripheral Interface 0	
5	SPI1	Serial Peripheral Interface 1	
6	USO	USART 0	
7	US1	USART 1	
8	SSC	Synchronous Serial Controller	
9	TWI	Two-wire Interface	
10	PWMC	Pulse Width Modulation Controller	
11	UDP	USB Device Port	
12	TCO	Timer/Counter 0	
13	TC1	Timer/Counter 1	
14	TC2	Timer/Counter 2	
15	CAN	CAN Controller	
16	EMAC	Ethernet MAC	
17	ADC ${ }^{(1)}$	Analog-to Digital Converter	
18-29	Reserved		
30	AIC	Advanced Interrupt Controller	IRQ0
31	AIC	Advanced Interrupt Controller	IRQ1

Note: 1. Setting SYSC and ADC bits in the clock set/clear registers of the PMC has no effect. The System Controller and ADC are continuously clocked.

10.3 Peripheral Multiplexing on PIO Lines

The AT91SAM7X512/256/128 features two PIO controllers, PIOA and PIOB, that multiplex the I/O lines of the peripheral set.

Each PIO Controller controls 31 lines. Each line can be assigned to one of two peripheral functions, A or B. Some of them can also be multiplexed with the analog inputs of the ADC Controller.

Table 10-2 on page 33 and Table 10-3 on page 34 defines how the I/O lines of the peripherals A, B or the analog inputs are multiplexed on the PIO Controller A and PIO Controller B. The two columns "Function" and "Comments" have been inserted for the user's own comments; they may be used to track how pins are defined in an application.

Note that some peripheral functions that are output only, may be duplicated in the table.
At reset, all I/O lines are automatically configured as input with the programmable pull-up enabled, so that the device is maintained in a static state as soon as a reset is detected.
10.4 PIO Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A

PIO Controller A				Application Usage	
I/O Line	Peripheral A	Peripheral B	Comments	Function	Comments
PAO	RXDO		High-Drive		
PA1	TXD0		High-Drive		
PA2	SCKO	SPI1_NPCS1	High-Drive		
PA3	RTSO	SPI1_NPCS2	High-Drive		
PA4	CTSO	SPI1_NPCS3			
PA5	RXD1				
PA6	TXD1				
PA7	SCK1	SPIO_NPCS1			
PA8	RTS1	SPIO_NPCS2			
PA9	CTS1	SPIO_NPCS3			
PA10	TWD				
PA11	TWCK				
PA12	SPI_NPCS0				
PA13	SPIO_NPCS1	PCK1			
PA14	SPIO_NPCS2	IRQ1			
PA15	SPIO_NPCS3	TCLK2			
PA16	SPIO_MISO				
PA17	SPIO_MOSI				
PA18	SPIO_SPCK				
PA19	CANRX				
PA20	CANTX				
PA21	TF	SPI1_NPCS0			
PA22	TK	SPI1_SPCK			
PA23	TD	SPI1_MOSI			
PA24	RD	SPI1_MISO			
PA25	RK	SPI1_NPCS1			
PA26	RF	SPI1_NPCS2			
PA27	DRXD	PCK3			
PA28	DTXD				
PA29	FIQ	SPI1_NPCS3			
PA30	IRQ0	PCK2			

10.5 PIO Controller B Multiplexing

Table 10-3. Multiplexing on PIO Controller B

PIO Controller B				Application Usage	
I/O Line	Peripheral A	Peripheral B	Comments	Function	Comments
PB0	ETXCK/EREFCK	PCKO			
PB1	ETXEN				
PB2	ETXO				
PB3	ETX1				
PB4	ECRS				
PB5	ERX0				
PB6	ERX1				
PB7	ERXER				
PB8	EMDC				
PB9	EMDIO				
PB10	ETX2	SPI1_NPCS1			
PB11	ETX3	SPI1_NPCS2			
PB12	ETXER	TCLK0			
PB13	ERX2	SPIO_NPCS1			
PB14	ERX3	SPIO_NPCS2			
PB15	ERXDV/ECRSDV				
PB16	ECOL	SPI1_NPCS3			
PB17	ERXCK	SPIO_NPCS3			
PB18	EF100	ADTRG			
PB19	PWM0	TCLK1			
PB20	PWM1	PCKO			
PB21	PWM2	PCK1			
PB22	PWM3	PCK2			
PB23	TIOAO	DCD1			
PB24	TIOB0	DSR1			
PB25	TIOA1	DTR1			
PB26	TIOB1	RI1			
PB27	TIOA2	PWM0	AD0		
PB28	TIOB2	PWM1	AD1		
PB29	PCK1	PWM2	AD2		
PB30	PCK2	PWM3	AD3		

AT91SAM7X512/256/128 Preliminary Summary

10.6 Ethernet MAC

- DMA Master on Receive and Transmit Channels
- Compatible with IEEE Standard 802.3
- 10 and $100 \mathrm{Mbit} / \mathrm{s}$ operation
- Full- and half-duplex operation
- Statistics Counter Registers
- MII/RMII interface to the physical layer
- Interrupt generation to signal receive and transmit completion
- 28 -byte transmit FIFO and 28 -byte receive FIFO
- Automatic pad and CRC generation on transmitted frames
- Automatic discard of frames received with errors
- Address checking logic supports up to four specific 48-bit addresses
- Support Promiscuous Mode where all valid received frames are copied to memory
- Hash matching of unicast and multicast destination addresses
- Physical layer management through MDIO interface
- Half-duplex flow control by forcing collisions on incoming frames
- Full-duplex flow control with recognition of incoming pause frames
- Support for 802.1Q VLAN tagging with recognition of incoming VLAN and priority tagged frames
- Multiple buffers per receive and transmit frame
- Jumbo frames up to 10240 bytes supported

10.7 Serial Peripheral Interface

- Supports communication with external serial devices
- Four chip selects with external decoder allow communication with up to 15 peripherals
- Serial memories, such as DataFlash ${ }^{\circledR}$ and 3-wire EEPROMs
- Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
- External co-processors
- Master or slave serial peripheral bus interface
- 8- to 16-bit programmable data length per chip select
- Programmable phase and polarity per chip select
- Programmable transfer delays per chip select, between consecutive transfers and between clock and data
- Programmable delay between consecutive transfers
- Selectable mode fault detection
- Maximum frequency at up to Master Clock

10.8 Two-wire Interface

- Master Mode only
- Compatibility with standard two-wire serial memories
- One, two or three bytes for slave address
- Sequential read/write operations

10.9 USART

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
- 1, 1.5 or 2 stop bits in Asynchronous Mode
- 1 or 2 stop bits in Synchronous Mode
- Parity generation and error detection
- Framing error detection, overrun error detection
- MSB or LSB first
- Optional break generation and detection
- By 8 or by 16 over-sampling receiver frequency
- Hardware handshaking RTS - CTS
- Modem Signals Management DTR-DSR-DCD-RI on USART1
- Receiver time-out and transmitter timeguard
- Multi-drop Mode with address generation and detection
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
- NACK handling, error counter with repetition and iteration limit
- IrDA modulation and demodulation
- Communication at up to 115.2 Kbps
- Test Modes
- Remote Loopback, Local Loopback, Automatic Echo

10.10 Serial Synchronous Controller

- Provides serial synchronous communication links used in audio and telecom applications
- Contains an independent receiver and transmitter and a common clock divider
- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

10.11 Timer Counter

- Three 16-bit Timer Counter Channels
- Three output compare or two input capture
- Wide range of functions including:
- Frequency measurement
- Event counting
- Interval measurement
- Pulse generation

AT91SAM7X512/256/128 Preliminary Summary

- Delay timing
- Pulse Width Modulation
- Up/down capabilities
- Each channel is user-configurable and contains:
- Three external clock inputs
- Five internal clock inputs, as defined in Table 10-4

Table 10-4. Timer Counter Clocks Assignment

TC Clock input	Clock
TIMER_CLOCK1	MCK/2
TIMER_CLOCK2	MCK/8
TIMER_CLOCK3	MCK/32
TIMER_CLOCK4	MCK/128
TIMER_CLOCK5	MCK/1024

- Two multi-purpose input/output signals
- Two global registers that act on all three TC channels

10.12 Pulse Width Modulation Controller

- Four channels, one 16-bit counter per channel
- Common clock generator, providing thirteen different clocks
- One Modulo n counter providing eleven clocks
- Two independent linear dividers working on modulo n counter outputs
- Independent channel programming
- Independent enable/disable commands
- Independent clock selection
- Independent period and duty cycle, with double buffering
- Programmable selection of the output waveform polarity
- Programmable center or left aligned output waveform

10.13 USB Device Port

- USB V2.0 full-speed compliant, 12 Mbits per second
- Embedded USB V2.0 full-speed transceiver
- Embedded 1352-byte dual-port RAM for endpoints
- Six endpoints
- Endpoint 0: 8 bytes
- Endpoint 1 and 2: 64 bytes ping-pong
- Endpoint 3: 64 bytes
- Endpoint 4 and 5: 256 bytes ping-pong
- Ping-pong Mode (two memory banks) for bulk endpoints
- Suspend/resume logic

10.14 CAN Controller

- Fully compliant with CAN 2.0A and 2.0B
- Bit rates up to $1 \mathrm{Mbit} / \mathrm{s}$
- Eight object oriented mailboxes each with the following properties:
- CAN Specification 2.0 Part A or 2.0 Part B Programmable for each Message
- Object configurable to receive (with overwrite or not) or transmit
- Local tag and mask filters up to 29-bit identifier/channel
- 32-bit access to data registers for each mailbox data object
- Uses a 16-bit time stamp on receive and transmit message
- Hardware concatenation of ID unmasked bitfields to speedup family ID processing
- 16-bit internal timer for time stamping and network synchronization
- Programmable reception buffer length up to 8 mailbox objects
- Priority management between transmission mailboxes
- Autobaud and listening mode
- Low power mode and programmable wake-up on bus activity or by the application
- Data, remote, error and overload frame handling

10.15 Analog-to-Digital Converter

- 8-channel ADC
- 10-bit 384 K samples/sec. Successive Approximation Register ADC
- $-3 /+3$ LSB Integral Non Linearity, -2/+2 LSB Differential Non Linearity
- Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs
- External voltage reference for better accuracy on low voltage inputs
- Individual enable and disable of each channel
- Multiple trigger sources
- Hardware or software trigger
- External trigger pin
- Timer Counter 0 to 2 outputs TIOAO to TIOA2 trigger
- Sleep Mode and conversion sequencer
- Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels
- Four of eight analog inputs shared with digital signals

AT91SAM7X512/256/128 Preliminary Summary

11. Package Drawings

Figure 11-1. LQFP Package Drawing

Table 11-1. 100-lead LQFP Package Dimensions

Symbol	Millimeter			Inch		
	Min	Nom	Max	Min	Nom	Max
A			1.60			0.63
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
D	16.00 BSC			0.630 BSC		
D1	14.00 BSC			0.551 BSC		
E	16.00 BSC			0.630 BSC		
E1	14.00 BSC			0.551 BSC		
R2	0.08		0.20	0.003		0.008
R1	0.08			0.003		
Q	0°	3.5°	7°	0°	$3.5{ }^{\circ}$	7°
$\theta 1$	0°			0°		
$\theta 2$	11°	12°	13°	11°	12°	13°
$\theta 3$	11°	12°	13°	11°	12°	13°
C	0.09		0.20	0.004		0.008
L	0.45	0.60	0.75	0.018	0.024	0.030
L1	1.00 REF			0.039 REF		
S	0.20			0.008		
b	0.17	0.20	0.27	0.007	0.008	0.011
e	0.50 BSC			0.020 BSC		
D2	12.00			0.472		
E2	12.00			0.472		
Tolerances of Form and Position						
aaa	0.20			0.008		
bbb	0.20			0.008		
ccc	0.08			0.003		
ddd	0.08			0.003		

AT91SAM7X512/256/128 Preliminary Summary

Figure 11-2. 100-TFBGA Package Drawing

All dimensions are in mm

12. Ordering Information

Table 12-1. Ordering Information

Ordering Code	Package	Package Type	Temperature Operating Range
AT91SAM7X512-AU AT91SAM7X512-CU	LQFP 100	Green	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
AT91SAM7X256-AU	TFBGA 100	Green	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
AT91SAM7X256-CU	TFBGA 100	Industrial	
AT91SAM7X128-AU	LQFP 100	Green	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
AT91SAM7X128-CU	TFBGA 100		

AT91SAM7X512/256/128 Preliminary Summary

Revision History

Table 12-2. Revision History

Doc. Rev	Comments	Change Request Ref.
6120AS	First issue - Unqualified on Intranet Legal page updated.Qualified on Intranet	
	Corrections to maintain consistency with full datasheet: In "Features" on page 1, corrected Page Programming Time and Full Erase Time; corrected number of PDC channels, removed Wake-on-LAN support. In Figure 2-1 on page 4, corrected number of PDC channels. In Figure 2-1 on page 4, Table 3-1 on page 5, Table 10-2 on page 33 and Table 10-3 on page 34, changed all SPI pin names. In Section 5.2 "Power Consumption" on page 11, changed value of static current level and value of dynamic power consumption level on VDDCORE In Section 6.2 "Test Pin" on page 13, removed reference to SAM-BA boot recovery. In Section 6.6"I/O Lines Current Drawing" on page 14, changed value of total current level. In Section 7.4 "Peripheral DMA Controller" on page 16, corrected number of PDC channels. In Section 8. "Memories" on page 17, corrected Page Programming Time and Full Erase Time. In Section 8.7 "SAM-BA Boot Assistant" on page 22, updated section. In Figure 9-1 on page 25, changed range of periph_irq and periph_clk on AIC and for Embedded Peripherals block. In Section 10.6 "Ethernet MAC" on page 35, updated features.	CSR 05-388

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High-Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$, DataFlash ${ }^{\circledR}$ and others, are registered trademarks SAM-BA ${ }^{T M}$ and others are trademarks of Atmel Corporation or its subsidiaries. ARM ${ }^{\circledR}$, the ARM Powered ${ }^{\circledR}$ logo and others, are registered trademarks or trademarks of ARM Limited. Other terms and product names may be the trademarks of others.

